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Chapter 12

WAVE   MOTION

A.)  Characteristics of Waves:

1.)  A wave is a disturbance that moves through a medium.

a.)  Example:  A pebble is dropped into a quiet pond.  The DIS-
TURBANCE made by the pebble is what moves outward over the water's
once-still surface.  Water molecules are certainly jostled by the wave, but
after the wave passes by, each molecule finds itself back in its original,
pre-disturbance position (at least to a good approximation).

In other words, water waves are not made up of lumps of water that
move across the water's surface.  They are disturbances that move through
the water that only temporarily displace water molecules in the process.

Note 1:  A group of waves is called a wave train.

Note 2:  Looking down from above, pebble-produced water waves will look
like a series of crests and troughs moving in ever-expanding circles outward away
from the pebble's point-of-entry into the water.  If, at a given instant, lines are
drawn on the crests, we find a visual presentation of the waves as shown in Figure
12.1b.  Figure 12.1a shows a side-view of this same situation.
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Note 3:  Once a wave train has moved far enough away from its source,
crests in the immediate vicinity of one another are to a very good approximation
parallel to one another (look at the outer sections in Figure 12.1a).  Waves in
this situation are called plane waves and are shown on the previous page in
Figure 12.1c.  It is not uncommon for plane waves to be assumed when wave-
phenomena are being discussed.

b.)  A sound
wave is a pressure
disturbance that
moves through air
or water, or what-
ever the host
medium happens
to be.

Human vocal
sound is generated
by the back and
forth vibration of
the vocal cords.
When these cords
are extended, they
momentarily com-
press air
molecules together
creating a high
pressure region
that is accelerated
outward.  As the
cords pull back,
they generate a
momentary vac-
uum--a low pres-
sure region (in be-
tween these two
situations, the air
pressure obviously
passes through a
"normal" pressure circumstance).  In other words, the vibration of the
vocal cords creates regions of high pressure, then normal pressure, then
low pressure, then normal pressure, then high pressure, etc., as they
vibrate back and forth (Figure 12.2a presents a representation of what
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sound waves would look like if our eyes were sensitive to very subtle
pressure variations--Figure 12.2b graphs pressure variation versus
position for sound at a given point in time).

These pressure disturbances move out into the surrounding air at
approximately 330 meters per second (i.e., the speed of sound).  As they
pass a hearing person, the pressure variations motivate tiny hairs in the
listener's ears to vibrate generating electrical signals which, upon
reaching the brain, are translated into incoming sound.

Again, sound waves are a disturbance moving through a medium.
Without the medium, there can be no sound.

Note:  That's right, the next time you see Star Wars and they show a big
battle scene viewed from space, you have every right to stand up in the middle
of the movie theater and shout at the top of your lungs, "WAIT, WAIT, THIS
CAN'T BE.  THERE IS NO SOUND IN SPACE!!"  They'll probably throw you
out of the theater for causing a disturbance (i.e., for making waves--a little
physics humor), but you will be correct in exposing one of Hollywood's greatest
displays of scientific misinformation ever.

2.)  Waves are important because they carry energy.

Note:  If you think about it, this should be obvious.  If waves didn't carry
energy, sound waves wouldn't have the wherewithal to wiggle those little ear-
hairs that allow you to hear, and tidal waves would not have the ability to blow
away whole island-populations with a single achoo.

3.)  There are two kinds of waves, both of which are identified by how the
disturbance-producing force is applied:

a.)  Transverse waves:  These are waves that are created by a force
that is applied to a medium perpendicular to the direction of the wave's
motion in the medium.

i.)  An example:  When a pebble enters a pond, it applies a force
to the water that is perpendicular to the water's surface, hence
perpendicular to the wave's direction, as it moves out over the water's
surface.  As such, this is a transverse wave.

b.)  Longitudinal waves:  These are waves created by a force applied
to a medium in the same direction as the wave's motion in the medium.
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i.)  An example:  When sound from a loud-speaker is produced, the
speaker cone applies a force to air molecules that is in the same
direction as the subsequent pressure-waves that move out from the
device.

4.)  Wave reflection:

a.)  Consider a taut
rope fixed to a door.
Flicking the rope at the
unattached end will pro-
duce a single wave that
will travel down the rope
(see Figure 12.3a).  When
it gets to the door, the
wave will bounce off the
fixed end, flip 180o ( radi-
ans; one-half a cycle;
whatever--see Figure
12.3b) and proceed back
down the line.  This half-
wave inversion is typical of
wave-reflection off fixed ends.

b.)  Consider a rope
hanging freely from a
ceiling.  A single wave
moving downward (see
Figure 12.4a) will bounce
off the free bottom and
proceed back up toward
its origin.

The bounce-back flips
the wave 360o (i.e., it
comes back to its original
position) before the wave proceeds back up the rope (see Figure 12.4a).
This full-wave inversion (net effect--no inversion at all) is typical of wave
reflection off free ends.
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5.)  Some DEFINITIONS:

a.)  Wave-
length ( λ  in me-
ters):  the dis-
tance between
two successive
crests, or two
successive
troughs, or be-
tween two suc-
cessive positions
along the wave
that are exact
duplicates of one another (see Figure 12.5).

b.)  Frequency (" ν" in cycles/second--this symbol is a Greek "nu"):
the number of wavelengths that pass a fixed observer per second.

c.)  Period ("T" in seconds/cycle):  the time required for one full wave-
length to pass a fixed observer.  As in vibratory motion, T = 1/ ν.

d.)  Wave velocity ("v" in meters/second):  the velocity of a wave dis-
turbance as it moves through its medium.  Mathematically:

v = λ  ν.

(Don't believe me?  Check the units.)
A consequence of this relationship: for a given wave, high frequency

corresponds to short wavelength and vice versa.

e.)  Nodes and anti-nodes:  a node is a null spot on the wave.  It cor-
responds to a place where the displacement of the wave is zero (see
Figure 12.5).  An anti-node is a spot where the displacement is a
maximum.  It corresponds to a crest or trough (see Figure 12.5).

f.)  Superposition of waves:  when two waves in the same medium
run into one another, the two disturbances will add to one another in a
linear way.  Given such a situation, there are a number of outcomes:

i.)  Constructive superposition:  a situation in which the two
waves momentarily produce a single wave that is larger than the
original two.  For two waves with the same amplitude A, completely
constructive superposition will yield a displacement of 2A.
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ii.)  Destructive
superposition:  a situation in
which the two waves produce a
single wave that is smaller
than the largest of the original
two.  For two waves with the
same amplitude A, completely
destructive superposition will
produce a net displacement of
zero.

iii.)  Figure 12.6a shows two
waves (one denoted with dots,
one denoted with dots and
dashes) moving in opposite
directions in the same
medium.  Figures 12.6b and
12.6c show the waves at
various stages of su-
perposition.

B.)  Mathematics of Traveling Waves:

1.)  The displacement of a
traveling sine wave is a function of both
time and position.  Its displacement will
vary at a given time from place to place in
addition to varying at a given place as
time proceeds.

2.)  The function that
characterizes this situation is:

y(x,t) = A sin (kx + ωt),

where A is the amplitude of the wave, k (the wave number) is defined as 2/ λ
(just as ω --the angular frequency--governs how fast the function changes
relative to time, k governs how fast the function changes relative to position--it
is like a positional-frequency function), and x and t are the two variable-
parameters that allow one to zero in on a particular place at a particular time of
interest (for more, see Problem 12.3 at the chapter's end).
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C.)  Resonance:

1.)  Vibrating systems usually have at least one frequency at which the
system will naturally vibrate.  A swing, for instance, acts like a pendulum.  In
the last chapter, we found that for small angles the frequency of a pendulum is
dependent upon the acceleration of gravity and the length of the pendulum arm.
Assuming neither of those changes in a given situation, a pendulum has only
one frequency at which it will freely, naturally oscillate (in fact, this is
approximately true even for moderately large amplitude oscillations).
Although you haven't run into any yet, there are systems that have more than
one natural frequency.

2.)  Resonance is a situation in which the frequency of an applied force
matches one of the natural frequencies of the system to which the force is ap-
plied.  The consequence of such a condition is an increase in the system's energy
and amplitude of vibration.

3.)  Example:  Consider a mass attached to the spring shown in Figure
12.7.  Every such spring/mass combination will have one natural frequency at
which the system will oscillate (remember ν  = [(k/m)1/2]/2 ?).  For this ex-
ample, assume that the natural frequency is 1/2 cycle per
second.  As the period is T = 1/ ν , the period of this
oscillation will be 2 seconds per cycle.  With the mass at
rest:

a.)  A force is briefly applied to the mass,
then applied periodically for just a moment every
1.75 seconds (see Figure 12.7).  Will the force help
or hinder the oscillatory motion?

i.)  As the force's frequency is out of sync
with the natural frequency of the system, it
doesn't take a genius to see that the force will
fight the natural motion of the system.  The
consequence: the mass's motion will be
disorderly and chaotic.

b.)  Another possibility: the frequency of the applied force is now 2
seconds/cycle.  Under this condition, the push comes each time the mass
is at its lowest point--each time the mass is naturally ready to start
upwards again.  The force helps the motion because the frequency of the
applied force matches the natural frequency of the oscillating system.  As
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such, the amplitude of the motion gets bigger and bigger with each cycle,
and the energy of the vibrating system increases.

Note:  You might at first think that because the amplitude of the os-
cillation is changing, the frequency must change.  Not so for ideal springs.   The
frequency of an oscillating spring/mass system is not a function of amplitude;
the frequency will remain the same no matter how large the amplitude.

D.)  Resonance and String Systems:

1.)  A more complex resonance situation is found in what are called
standing waves.

Note:  Although a spring has only one natural frequency, a string system
has an infinite number of possible natural frequencies.  Why this is so will
become evident shortly.

a.)  Consider a rope of length L and mass density h (h is the rope's
mass/length) stretched taut between two fixed points.  A small transverse
force is periodically applied at one end creating a series of waves moving
down the string (this is called a wave train).  As the waves move, each
will sooner or later bounce off the fixed end, flipping a half-cycle before
proceeding back toward its origin.  These reflected waves will run into
newly formed waves coming in the other direction and a superposition of
waves will take place along the entire string.

b.)  Just as was the case with the mass/spring system, the frequency
of the applied force has a lot to do with how this superposition proceeds.

i.)  If there is no applied force once the first few waves are set in
motion, the waves will travel up and back and up and back until
frictional effects dampen them out (this usually happens quickly).

ii.)  What happens if the applied force at Point A continues after the
first few waves are formed?  In that case, it depends upon the frequency
of the applied force.  If the frequency is out of sync with the natural
frequency of oscillation on the string, the returning waves will be met by
an applied force that fights their natural motion.  The net result will be
a superposition of incoming and outgoing waves along the string that is
disorganized and the string will jerk around chaotically.

Note:  This is just like applying a force whose frequency is 1.75 cycles per
second to a swing whose natural frequency is 2 cycles per second.
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iii.)  If, on the other hand, the frequency of the applied force matches
one of the natural frequencies of the system, the applied force will
reinforce the waves bouncing off Point A and the superposition that
subsequently occurs on the string will be orderly and well defined.
When such a situation arises, the net wave formed on the string is the
consequence of superposition and is called a standing wave.

iv.)  At a given instant, the waveform for the standing wave de-
scribed above will look like
a sine wave.  Because the
wave's net displacement is
constantly changing quickly,
such standing waves usually
look like the blurred form
shown in Figure 12.8a.
Figure 12.8b uses a strobe
effect to show a snapshot
view of the string at
different points in time.

Note:  A given point on the
string will move up and down with
simple harmonic motion.  In terms of
energy, that means each point will have
energy (1/2)kAp

2 associated with it,
where k is some constant and Ap is the
amplitude--the maximum
displacement--of that point.  As the
amplitude of each point on the string
varies, the amount of energy
associated with each point on the string will be different.

This fact is where the name standing wave came from.  True, the point
displacements vary so fast that the net wave looks like a single, blurred, two-
dimensional standing form, but in fact the name was originated to honor the
fact that the energy of a particular point stands constant throughout the motion
(see Figure 12.8b).

v.)  Bottom line:  When an applied force is in sync with one of the
natural frequencies of a string system, resonance occurs and the
displacement of each point on the string is found to move in a very
precise, harmonious way.  The net effect is to produce string motion
that outlines a mirror-image sine wave.
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2.)  In terms of the system's parameters (i.e., wave velocity v, string
length L, etc.), how can we determine the natural frequencies of a string system
(i.e., what is the lowest natural
frequency, the second lowest
natural frequency, etc.) and,
hence, the applied-force frequencies
that will allow the system to
resonate?

The answer to that
question is outlined below.

a.)  Observation #1:
Begin by considering the
standing wave shown in
Figure 12.9.

b.)  Observation #2:  We know that there exists a relationship be-
tween a wave's velocity v, wavelength λ a, and wave frequency ν a.  It is:  v
= λ a ν a.

Note:  If we can determine both the wave velocity v and the wave's
wavelength λ a when our standing wave exists on the string, we can use the
above relationship to determine the natural frequency ν a that corresponds to
that standing wave.

c.)  Observation #3:  There is a known relationship between the
velocity v of a wave moving on a string of tension T and mass density h.
That relationship is: v = (T/h)1/2.

d.)  Observation #4:  By inspection, we can determine a standing
wave's wavelength λ a in terms of the known string length L.  Looking at
Figure 12.9 we ask, "How many wavelengths of length λ a are there in the
length L?"  Mathematically, this is like querying, "Find the N in the
equation N λ a = L."  Examining Figure 12.9, it is obvious that there are
two λ a's in the length L, or 2λ a = L.  From this, we get λ a = L/2.

e.)  Observation #5:  With the information found in Observations 2,
3, and 4, we can determine the natural frequency of the wave shown in
Figure 12.9.  It is:
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Point A

          v = λ a νa.
 ⇒    νa = v/ λ a
                = v/(L/2).

f.)  We have just found one natural frequency at which a system will
oscillate; we now know one applied-force frequency at which that system
will resonate.

3.)  This approach works fine as long as you have the sketch.  What
happens when that isn't the case?  What happens when the question simply
states, "Given a string length L and wave
velocity v, determine the three lowest frequen-
cies of wave that can stand on this system?"

Using an "observation" approach:

a.)  Observation #1:  Figures
12.10 a, b, and c show different
frequency standing waves standing on
the same system (i.e., the same
length of string).  What do they have
in common?

i.)  In all cases, there are nodes
at each end of the string.  Each
wave has a wavelength that fits
the constraint of having nodes a
distance L meters apart.

ii.)  Does this make sense?
Certainly!  The string is fixed at
each end.  That means there can
be no motion at those points (as
the force at Point A has a tiny
amplitude--it is legitimate to
ignore it, calling Point A a node).

b.)  Observation #2:  If you didn't
have the sketches to look at, could you
have created them?  Yes!

i.)  Draw a sine wave (see Figure 12.11 on the next page).
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ii.)  Determine
the left-end
constraint for your
system (the left-
end constraint in
our example is a
node).  Proceed
toward the right
along the sine wave
until you come to a
point that matches
the right-end con-
straint (in our
example, this is
another node).  If
there are no other
constraints
between the endpoints (i.e., there are no forced nodes in between due
to somebody holding the string), the waveform between the endpoints
will be the longest wavelength waveform (i.e., lowest frequency
waveform) THAT FITS THE CONSTRAINTS OF THE SYSTEM.

iii.)  From here, you can either re-draw the section-of-sine-wave you
are interested in, or simply use the original drawing to put in the length
L (Figure 12.11 shows L placed directly onto the working sine wave).

  iv.)  Having the sketch, you can then proceed to ask, "How many wave-
lengths are there in the length L?"  Mathematically, this can be written: 

N λ n = L.

Once answered, proceed from there.

Note:  If you want the second lowest frequency for the example, the process
is exactly the same.  Draw a sine wave; match the string's left-end constraint (a
node in this case) with a point on the sketch; proceed to the right until you find
a point that matches the string's right-end constraint.   If the waveform encom-
passed between those two points has already been used (in this case, the two-
consecutive-nodes waveform was used for the lowest frequency waveform), con-
tinue to the right until you find the next point that satisfies the right-end con-
straint (see Figure 12.12).  If there are no additional constraints between the
two ends (nobody is holding the string in the middle somewhere), the waveform
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FIGURE 12.12

you see in between your two
chosen points (both nodes in
this case) will correspond to the
second longest wavelength
waveform (i.e., the second lowest
frequency waveform).   Define
the distance between the two
endpoints as L and proceed as
before.

4.)  Consider a string of
length L constrained to hang
from the ceiling as shown in
Figure 12.13.  Assume the
velocity of a wave moving on the
string is a known v.  If a small,
periodic, transverse force is
applied to the string at the
ceiling, what are the two lowest
frequencies at which the string
will resonate?  That is, what are

L

string

ceiling

FIGURE 12.13

the two lowest frequencies that can stand on the string?

a.)  First, we need to identify the constraints.
They are:

i.)  A node at the ceiling (ignoring the
applied jiggle the string is fixed there);

ii.)  An anti-node at the free end; and

iii.)  There are no additional constraints
between the two ends.

b.)  With the constraints in mind, consider
the vertical sine wave shown in Figure 12.14 (a
vertical sine wave has been used to better reflect
the situation--a horizontal sine wave would have
worked just as well).  Beginning at any conve-
nient node (there must be a node at the ceiling),
proceed down until you run into the first anti-node (this is the constraint
at the free end).  The longest wavelength waveform that can fit the
system's constraints is the smallest section of sine wave to fit the
constraints (see Figure 12.14).
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start at node

proceed to
first anti-node

L

FIGURE 12.14

i.)  You can re-draw this wave-
form or put L on the original wave-
form as is done in Figure 12.14.

c.)  Asking the question: How many
of these wavelengths are there in the
length L, or Nλ 1  = L, we get:

(1/4) λ 1 = L
 ⇒   λ 1 = 4L.

d.)  Putting it all together, we end up
with:

start at node

proceed to
second anti-node

L

FIGURE 12.15

v = λ 1 ν1
      ⇒      ν1 = v/ λ 1

          = v/(4L).

e.)  Following a similar series of
steps, the second longest wavelength
waveform to satisfy the constraints is
shown in Figure 12.15.  The math yields:

     (3/4) λ 2 = L
              ⇒    λ 2 = (4/3)L.

As v = λ 2 ν 2, we can write:
  ν2 = v / λ 2
        = (3v)/(4L).

Note:  Although you can have either a
node or anti-node at a given end, you can only
have nodes in between endpoints as there is no
way to force a system to exhibit anti-nodes in its mid-section.
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Point C
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       Point A
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  anti-node)

        Point B
(a node half-way
        between
 Points A and C)

Point D
   (the third anti-
         node down)

FIGURE 12.17

E.)  Resonance and a Steel Bar:

1.)  Consider the bar of length L shown
in Figure 12.16.  It is constrained by a clamp
located half way down the bar's length.  If the
bar is tapped once at the end, a series of
waves will be found to "stand" on the bar.  If
the velocity of the waveform on the bar is a
known value v, what are the two lowest fre-
quencies at which the bar will ring?

a.)  The constraints: anti-nodes at
both ends and a node in the middle.

b.)  Consider the sine wave drawn in Figure 12.17.

i.)  If we start at
the anti-node at Point
A and proceed to the
right, the next anti-
node we come to is
located at Point C on
the sketch.  That
takes care of the end
constraint.  But . . .

ii.)  The waveform
we are looking for
must additionally
have a node in the
middle.  Fortunately
for us, this waveform has a node halfway between the endpoints,
which means we have found the longest wavelength (lowest fre-
quency) wave form that conforms to the constraints of the problem.

c.)  The math proceeds just as it did with the string systems:  We
begin by asking, "How many λ 's in L?"  Proceeding yields:

 (1/2) λ 1 = L
 ⇒   λ 1 = 2L.
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   length L

clamped clamped
 at 2L/3

FIGURE 12.19

As v = λ 1 ν1, we can write:
             ν1 = v / λ 1

       = v/(2L).

d.)  For the second longest wavelength waveform, it might be tempting
to assume the third anti-node (the one located at Point D in Figure 12.17
on the previous page) is the appropriate choice.  A closer look shows that
the waveform extending from Point A to Point D has an anti-node at its
center.  Our constraints require a node.

The waveform that
matches our con-
straints extends from
Point A to Point E in
Figure 12.18.  The
math yields:

     (3/2) λ 2 = L
      ⇒    λ 2 = (2/3) L.

As v = λ 2 ν 2,

         ν2 = v / λ 2
        = (3v)/(2L).

2.)  Consider the bar
shown in Figure 12.19.  It is constrained
by a clamp at one end and by a second
clamp located two-thirds of the way down
the bar's length.  What are the two lowest
frequencies at which this bar system will
ring?

a.)  The constraints: a node at
one end, a node two-thirds of the
way down the bar, and an anti-node
at the other end.

b.)  The longest waveform to conform to our constraints is shown in
Figure 12.20a on the next page.
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FIGURE 12.20a

FIGURE 12.20b

c.)  With a
sketch of the ap-
propriate wave-
form, we write:

   (3/4) λ 1 = L
    ⇒    λ 1 = (4/3)L.

As v = λ 1 ν1,

       ν1 = v / λ 1
             = (3v)/(4L).

d.)  Following
a similar series of
steps, the second
longest wavelength
waveform to
satisfy the con-
straints is shown
in Figure 12.20b.
The math yields:

    (9/4) λ 2 = L
     ⇒   λ 2 = (4/9)L.

As v = λ 2 ν 2,

       ν2 = v/ λ 2
 = (9v)/(4L).

Note:  The temptation might have been to go to the node just after the
anti-node used in the "longest wavelength" part of the problem, or for that
matter the anti-node after that one (see "won't do" note on Figure 12.20b).  The
problem with both of these choices is that there is no node two-thirds of the way
between either of them and the node at Point A.  All the constraints must be
met before we have our waveform.

3.)  Understand this approach to the point where you can find the two or
three lowest frequencies for any combination of clamps.
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node

FIGURE 12.20c
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4.)  Although we will use a simple situation to deduce the relevant points,
the following observations should be helpful when dealing with complex
standing wave problems.  Consider: A system has a node at its left-end, an
anti-node at its right-end, and an additional node-constraint 2/3 of the way from
the left-end.  Calling this 2/3 ratio the fractional distance between the mid-
range node and the left-end constraint, what is the lowest
frequency that will stand on this system?

a.)  By observation, the waveform that fits the
constraints is shown to the right in Figure 12.20c.

b.)  The question?  How can we be sure that the
waveform satisfies the constraints of a system?  That is,
if we have a waveform that we think fits the bill, how can
we check it?

c.)  The approach:

i.)  Count the number of QUARTER WAVELENGTHS in the
waveform.  In our example, there are 3 quarter wavelengths.

ii.)  Note the fractional distance between one of the end-
constraints (we have used the left-end NODE in our example) and the
mid-range constraint (mid-range constraints are always nodes).  In
our example, this is 2/3.

iii.)  Determine the product of the fractional distance and the number of
quarter wavelengths in the waveform.  In our case, this equals (2/3)(3)= 2.

Note:  If we had started at the other end (i.e., at the end constrained to
act as an anti-node), the product of the fractional distance and the number of
quarter wavelengths would have been (1/3)(3) = 1.

v.)  Conclusion (not a proof, but it happens to be always true)

1.)  If the product of the fractional distance and the number of
quarter wavelengths equals a WHOLE NUMBER, then the waveform
you are examining satisfies the mid-range constraint in question.

2.)  If the product does not equal a whole number, the
waveform does NOT satisfy the mid-range constraint.

vi.)  For a waveform to stand (resonate) on a particular system,
ALL of the mid-range constraints must satisfy the fractional-
distance/quarter-wavelength test.



Ch. 12--Wave Motion

373

rarified pressure region
normal pressure region
high pressure region

direction of
   wave motion

high

pressure

normal

low

position

Pressure versus Position Graph of a SOUND WAVE
                                       (at a given instant in time)

position

Pressure Difference versus Position Graph
   (this is proportional to particle motion
                    in the air medium)

maximum
 air motion

no motion

maximum
 air motion

pressure

   wave antinode
(lots of air motion)

  wave node
(no air motion)

P

P=0

x

FIGURE 12.21b

Note that around P = 0,    x produces
     a large    P and, hence, much air motion

FIGURE 12.21a

FIGURE 12.21c

F.)  Resonance of Sound in Columns of Air:

1.)  Sound is a longitudinal wave.  It is made up of successive high, then
low, then high pressure zones moving out through a medium.

a.)  Figure 12.21a
is the sketch of a
sound wave as it
would appear if your
eyes were sensitive to
pressure waves.

b.)  Figure 12.21b
graphs pressure as a
function of position in
space at a particular
point in time.

c.)  A pressure
difference motivates
air particles to move
from higher to lower
pressure.

d.)  When stand-
ing waves are set up
in air, the motion of
the air medium is
what dictates whether
a particular point is a
node or an anti-node.

e.)  On either side of
a pressure maximum,
the pressure difference
is very small, there is
very little air motion,
and with little motion
the medium (the air)
acts like a node.  On either side of a pressure zero, the pressure difference
is very large, there is great air motion, and with much motion the medium
acts like anti-nodes.  In short, the graph used to analyze sound standing
waves is really a pressure difference graph (see Figure 12.21c).
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FIGURE 12.22b

2.)  When sound moving down a wave-guide bounces
off a wall, it acts like a wave on a string bouncing off a fixed
end.  For sound-generated standing waves, a node will exist
wherever the sound bounces off a solid surface (this is like
saying that there is no net air motion at the wall).  An open
surface like the end of an open pipe (see Figure 12.22a, for
example) acts like an anti-node.  With this in mind,
consider the following situation.

3.)  A tube of known length L is open at one end and
closed at the other (see Figure 12.22a).  A series of sound
waves is projected into the tube.  What are the three lowest
frequencies that will resonate in the air column?

a.)  The constraints are: an anti-node at the top
and a node at the bottom.  There are no additional
constraints in-between the ends (i.e., no baffles anywhere).

b.)  Consider the sine wave drawn in
Figure 12.22b (this sine wave is presented
in both a vertical and horizontal setting:
there is no difference--use the one that
seems the least confusing).  There are no
additional constraints between the
endpoints, so we will start at an anti-node
(Point A) and proceed until we hit the first
node (Point B).  Making this distance
equal to the tube's length L, we do the
process.

c.)  The math dictates:

(1/4) λ 1 = L
 ⇒    λ 1 = 4L.

As  v = λ 1 ν1.
ν1 = v/ λ 1
      = v/(4L).

d.)  L = 1.5 m, the speed of sound in air
is approximately 330 m/s, and
remembering that THE UNIT FOR
FREQUENCY is technically 1/seconds:
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FIGURE 12.25

       ν1 = v/ λ 1
   = (330 m/s)/[(4)(1.5 m)]

 = 55 Hz.

e.)  The second longest wavelength is
found in Figure 12.23 (we will use a
vertical sine wave only).
The math yields:

(3/4) λ 2 = L
   ⇒      λ 2 = (4/3)L.

As v = λ 2 ν 2,
ν2 = v/ λ 2
      = (3v)/(4L).
      = 3(330 m/s)/[(4)(1.5 m)]
      = 165 Hz.

f.)  The third longest wavelength is
found in Figure 12.24.  The math yields:

(5/4) λ 2 = L
    ⇒     λ 2 = (4/5)L.

As v = λ 2 ν 2,
ν2 = v/ λ 2
      = (5v)/(4L)
      = 5(330 m/s)/[(4)(1.5 m)]
     = 275 Hz.

4.)  Now consider the same pipe open
at both ends. What is the third lowest
frequency at which this system will resonate?

a.)  The constraints: anti-nodes at
both ends.

b.)  The waveform that conforms
to our constraints and specifications
(i.e., the third lowest frequency) is
shown in Figure 12.25 to the right.

c.)  From the sketch, we write:
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(3/2) λ 3 = L
          ⇒      λ 3 =  (2/3) L.

As v = λ 3 ν 3,
ν3 = v/ λ 3
      = (3v)/(2L)
      = 3(330 m/s)/[(2)(1.5 m)]
      = 330 Hz.

5.)  Parting shot:  Look at the constraints; draw your sketch; find l in
terms of L; then use ν  = v/ λ  to determine the resonance frequency.

G.)  Odds and Ends--Beats and the Doppler Effect:

1.)  There are two other areas of wave phenomena that need to be briefly
examined.  The first is beats, the second is the Doppler Effect.

2.)  BEATS:

a.)  Figure 12.26 on the next page shows two equal-amplitude sound
waves of slightly different frequency mingling with one another.  The
same figure also shows the superposition of those two waves.

b.)  Because one waveform has a slightly higher frequency, it cycles a
little bit faster than the other.  That means that if both start out in
phase (i.e., if both have their peaks and troughs initially aligned), the two
will sooner or later go out of phase.

c.)  When in phase, the superposition of the waves is constructive and
the amplitude of the net wave is large (this corresponds to loud sound).
When out of phase, the superposition of waves is destructive and there is
no net wave (this corresponds to no sound).

d.)  The frequency of this sound variation (sometimes called a
warble) is called the beat frequency of the superimposing waves.

e.)  Numerically, the beat frequency equals the difference between the
two superimposing frequencies.
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FIGURE 12.26
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f.)  Guitarists use beats in tuning their instruments.  They do so by
plucking two strings that, if tuned, will have the same frequency.  If beats
are heard, the strings are out of tune.

3.)  The DOPPLER EFFECT:

a.)  Have you ever had a train pass
you while its whistle was being blown?
The sound has a relatively high frequency
as the train approaches, then abruptly
drops in frequency after having gone by.
This is the consequence of what is called
the Doppler Effect.

b.)  Consider a single sound source
putting out sound of wavelength λ 1.  At
regular intervals, a sound crest (i.e., a
high pressure ridge) is emitted from the
sound source and moves out at approxi-
mately 330 m/s (i.e., the speed of sound
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in air).  Figure 12.27 on the next page shows a progression of such crests.
Note that the listener in the sketch hears sound whose wavelength is λ 1
and whose frequency is ν1 = vsound/ λ 1.

c.)  What happens when the sound source is moving toward the
listener (or vice versa)?  Figure 12.28 below shows the situation.  Assume
that at t = 0, the sound source puts out its first crest.  After a time
interval equal to the period T of the wave (remember, the period is the
time required for one cycle to pass by . . . it is also equal to 1/ ν source), a
second crest is emitted.  After another period's worth of time, another
crest is emitted, etc.

The distance between successive crests should be λ 1, but that is not what
the listener perceives.  Why?  Because the sound source is moving toward the
listener.  As such, the distance between crests is smaller than λ 1.

d.)  In fact, that wavelength will be the source's wavelength λ 1
minus the distance the source moved in time T (i.e., vsourceT).
Mathematically, this is:
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FIGURE 12.29
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λ new = λ 1 - vsourceT          (Equ. A).

e.)  As T = 1/ ν source, λ new = vsound/ ν new, and λ 1 = vsound/ ν1, we can
substitute everything into Equation A and come up with the expression:

        λ new         =            λ 1           -       vsourceT
     vsound/ νnew = vsound/ νsource -  vsource/ νsource .

Rearranging yields:

  νnew = vsound νsource/[vsound - vsource]         (Equ. B).

Note 1:  If the source had been moving away from the listener, the
expression would have had a positive sign in place of the negative sign.

Note 2:  Looking at the Doppler Shift sketches in Figure 12.28, what
would have happened if the velocity of the sound source had been greater than
the velocity of sound itself?
The situation is pictured in
Figure 12.29.  In that case, a
series of high pressure ridges
would superimpose in such a
way as to create a single,
super-high intensity pressure
ridge.  This shock wave is
what causes sonic booms
when jets exceed Mach 1 (i.e.,
the speed of sound).

 

f.)  Going back to
the train whistle:
When the train
approaches, a listener
will perceive crests
coming in at a shorter
wavelength than the actual wavelength of the whistle (again, see Figure
12.28).  Shorter wavelengths correspond to higher frequencies, which
means the sound heard by the listener will be of a higher frequency than
the whistle's actual frequency.  By the same token, after the train passes
the listener will hear a longer wavelength (i.e., lower frequency) sound.

As such, the train whistle seems to drop from high to low frequency
as the train transits from approaching to retreating.
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g.)  The Doppler Effect is particularly useful in astronomy.  White light
is the superposition of all of the frequencies of electromagnetic radiation to
which our eyes are sensitive.  A prism (or, for that matter, a diffraction
grating) can spread these superimposed frequencies out.  That is why white
light passed through a prism yields the colors of the rainbow.

Stars give off white light, but gases in the star's atmosphere absorb
out certain frequencies.  That means that when star light is passed
through a prism or diffraction grating, frequency gaps called spectral
lines are observed.

One particular gas, hydrogen, is found in the atmosphere of all stars.
Its absorption spectra (i.e., the series of spectral lines that are absorbed
out when white light passes through hydrogen) is well known.  What is
interesting is that when we look for the pattern of hydrogen spectral lines
in light from stars, we find the lines, but we find them shifted toward the
red end of the spectrum.  That is, their calculated frequencies are lower
than they should be.

This is a Doppler shift caused by the motion of the star relative to Earth.
The shift is associated with light waves instead of sound waves, but the
principles are the same.  From the observed shift, we can deduce two things.
First, as all star light seems to be red-shifted, all stars must be moving away
from us (a shift toward lower frequency is observed when a wave source recedes
from an observer).  Second, by measuring how large the red shift is, we can
determine the speed of the star relative to the earth.

i.)  Example:  A particular spectral line in the hydrogen spectrum
should have a frequency of 6x1014 Hz.  When observed from a star,
the line seems to have a frequency of 5x1014 Hz.  How fast is the star
receding from the earth?

Solution:  Using our frequency expression (Equ. B) and substi-
tuting the speed of light in for the speed of sound, we can write:

      νnew       =       vlight             νsource       /[     vlight     - vsource]

(6x1014 Hz) = (3x108 m/s)(5x1014 Hz)/[3x108 m/s - vsource].

Solving for the velocity of the source, we get vsource = .5x108 m/s.
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QUESTIONS

12.1)  On the assumption that one's hearing has not been ruined by loud
music or contact with intense noise, good ears can hear sounds between 20 Hz
and 20,000 Hz.

a.)  What is the wavelength associated with a 20 Hz sound wave?
How does this compare with everyday size?

b.)  What is the wavelength associated with a 20,000 Hz sound
wave?  How does this compare with everyday size?

12.2)  Three different waves are generated so as to coexist in the same
medium as they move to the right.  Figure I shows the outline of the three waves
as they would appear if they were to exist alone.

a.)  Make an approximate sketch of the wave that would actually
exist in the medium--i.e., the superimposed wave (do it lightly in pencil
directly on Figure I).

b.)  All the waves are moving with the same speed but their
amplitudes and angular frequencies are different.  As can be seen, each
wave is a sine wave which means each can be characterized using x = A
sin ω t (the amplitudes and angular frequencies are different but the
general form of each wave's expression is the same).  Using the
information available on the graph to determine the appropriate
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parameters, write out the algebraic expression that characterizes the
superposition of these three waves.  That is: take the largest wave's
amplitude and angular frequency and assume each is numerically equal
to 1; determine the amplitude and angular frequency of the other two
waves RELATIVE TO THE LARGEST (use the sketch and your head to
get the required information); write the x = A sinω t expression for all
three waves; then add them.

c.)  In looking at the expression determined in Part b, you should see
a pattern.  Following the pattern, write out the first six terms of the
series that seems to be emerging.  (Note:  If you look at the series from
Part b in fraction form--that is, for instance, using 1/4 instead of .25--the
pattern should become obvious.)

d.)  By looking at the superimposed wave you drew in Part a, you
should get a feel for the general wave form to which the series is
converging.  Draw a sketch of that wave form.

12.3)  For the traveling wave characterized below:

y(x,t) = 12 sin (25x - .67t).

a.)  Sketch y as a function of x from t = 0 to t = 1 second.
b.)  Is this traveling wave moving to the right or the left?
c.)  What can you conclude about the negative sign between the x term

and the t term in the function?  That is, in what direction would the wave
have traveled if that sign had been positive?

d.)  Determine the wave's frequency;
e.)  Determine the wave's period;
f.)   Determine the wave's wavelength;
g.)  Determine the wave's velocity;
h.)  Determine the wave's amplitude.

12.4)  A traveling wave moving left has a frequency of 225 Hz, an amplitude
of .7 meters, and a wave velocity of 140 m/s.  Characterize the wave
mathematically.

12.5)  A damaged meterstick (length L = .8 meters) having a mass of  m =
.4 kg is pinned through one end and made to swing back and forth executing
small-angle oscillations.  Newton's Second Law for this situation (i.e., after a
small angle approximation is made) yields the equation:

(2/3)α + (g/L)θ  = 0.

a.)  Determine the resonant frequency of the swinging meter stick.
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b.)  If small, periodic, tangential forces (i.e., a sequence of pushes
designed to make it swing) are applied to the bottom of the stick over
time, will its amplitude of motion become large or stay small if the
period of the applied pushes is:

i.)  1.31 seconds/cycle (approximately);
ii.)  1.47 seconds/cycle (approximately)?

12.6)  A violin string vibrating at 800 Hz has five nodes along its length of
.3 meters (this includes two nodes at the ends).  What is the velocity of the wave
on the string?

12.7)  Determine the third lowest resonant frequency for each of the systems
shown in Figure II.  Assume you know L and the wave velocity v.
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